
1/31/2002 1

Predicting and Controlling Resource Usage Predicting and Controlling Resource Usage
in a Heterogeneous Active Networkin a Heterogeneous Active Network

Virginie Galtier, Yannick Carlinet and Kevin L. Mills (NIST)
Stephen F. Bush and Amit B. Kulkarni (GE CRD)

National Research Council Review Meeting
February 9, 2001

1/31/2002 2

Overview of Presentation

z Modeling an Application’s CPU-Time Use

z Adapting CPU-Time Models for Use by Mobile Code in
Heterogeneous Networks

z Applying Adaptive CPU-Time Models (Experiments in Progress)

� Control Execution of Mobile Code in Magician Execution
Environment

� Predict CPU Consumption among Network Nodes using
GE’s Active Virtual Network Management Prediction
(AVNMP) System

z Future Research and Related Publications

1/31/2002 3

Modeling CPU Use by Applications

Trace is a series of system calls and
transitions stamped with CPU time use

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and
transitions stamped with CPU time use

Trace is a series of system calls and
transitions stamped with CPU time use

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

(1) Monitor at System Calls in Node Operating System

(2) Generate Execution Trace

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

(3) Consume Trace &
Generate Application Model

1/31/2002 4

Adapting CPU-Time Models for Mobile
Code in Heterogeneous Networks

The Average Absolute Deviation (in Percent) of Simulated
Predictions from Measured Reality for Each of Two Active
Applications (Average High Percentile Considers Combined
Comparison of 80th, 85th 90th, 95th, and 99th Percentiles)

Each Node Constructs a Node Model using two
calibration benchmarks:
� a system benchmark program ⌫ for each

system call, average system time
� for VM, an app. benchmark program ⌫

average time spent in the VM between
system calls

To scale an App. Model in a network, select one
Node Model as a reference known by all other
nodes

Some Sample Results: Scaling Magician
Application Models between Selected Pairs of
Nodes vs. Scaling with Processor Speeds Alone

App. model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 cc

scale

App. model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Scaling From Node X to Node Y

App. model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 cc

scale

App. model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Scaling From Node X to Node Y*

*

103119158GreenYellow

163190166BlackYellow

2826283GreenBlack

83114146GreenYellow

135154144BlackRed

8292106GreenRed

2224234GreenBlack

164190165BlackYellow

137155196BlackRed

6488154GreenRed

2041528<1GreenBlue

321323<1BlueBlack
2501592BlackBlue

Route

251316<1BlueBlack

1513182GreenBlue

381521<1BlackBlue

Ping

Avg. High Per.MeanAvg. High Per.MeanNode YNode XAA

Scaling with SpeedsScaling with Models

103119158GreenYellow

163190166BlackYellow

2826283GreenBlack

83114146GreenYellow

135154144BlackRed

8292106GreenRed

2224234GreenBlack

164190165BlackYellow

137155196BlackRed

6488154GreenRed

2041528<1GreenBlue

321323<1BlueBlack
2501592BlackBlue

Route

251316<1BlueBlack

1513182GreenBlue

381521<1BlackBlue

Ping

Avg. High Per.MeanAvg. High Per.MeanNode YNode XAA

Scaling with SpeedsScaling with Models

1/31/2002 5

Application: Control Execution of Mobile Code

Experiment in Progress: Control CPU Usage by Mobile Programs

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

When mobile code CPU usage
controlled with fixed allocation or
TTL, malicious or “buggy” mobile
programs can “steal” substantial CPU
cycles, especially on fast nodes

When mobile code CPU usage controlled with
fixed allocation or TTL, correctly coded
mobile programs can be terminated too soon
on slow nodes, wasting substantial CPU cycles

1/31/2002 6

CPU Control: Expected Results
fast node

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28 31 34

check time points

cp
u

w
as

te
d

(m
s)

TTL
NIST

slow node

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
check time points

cp
u

w
as

te
d

(m
s)

1/31/2002 7

Application: Predict CPU Usage among Network
Nodes: Experiment in Progress

GE Active Virtual Network
Management Prediction

(AVNMP) System

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Can NIST Models enable
AVNMP to predict CPU use

among heterogeneous network
nodes, while providing better

look ahead and improved
prediction efficiency than
simple TTL approaches?

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model
Generation

Magician AAs

500000 1�106 1.5�106 2�106 2.5�106 3�106
Wallclock+mS/

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

AVNMP AA

Source
Node

Fastest
Intermediate

Node

Destination
Node

Slowest
Intermediate

Node

Active Audio
CPU Model
Generation

Magician AAs

500000 1�106 1.5�106 2�106 2.5�106 3�106
Wallclock+mS/

50

100

150

200

Prediction Error Accuracy

500000 1�106 1.5�106 2�106 2.5�106 3�106
Wallclock+mS/

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

1/31/2002 8

CPU Prediction: Expected Results

Fast

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28 31 34

time check points

ro
llb

ac
ks TTL

NIST

Slow

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31 34

time check points

ro
llb

ac
ks TTL

NIST

Fast

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34

time check points

ah
ea

d
(m

s)

TTL
NIST

Slow

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22 25 28 31 34

time check points

ah
ea

d
(m

s)
TTL
NIST

1/31/2002 9

Future Research

z Improve Our Models
� Model Node-Dependent Conditions
� Attempt to Characterize Errors Bounds
� Improve the Space-Time Efficiency of Our Models
� Continue Search for Low-Complexity Analytically Tractable Models
� Investigate Models that Continue to Learn

z Investigate Competitive-Prediction Approaches
� Run Competing Predictors for Each Application
� Score Predictions from Each Model and Reinforce Good Predictors
� Use Prediction from Best Scoring Model

z Apply Our Models
� CPU Resource Allocation Control in Node Operating System
� Network Path Selection Mechanisms that Consider CPU Requirements
� CPU Resource Management Algorithms Distributed Across Nodes

1/31/2002 10

Related Publications

V. Galtier, C. Hunt, S. Leigh, K. Mills, D. Montgomery, M. Ranganathan, A. Rukhin, and
D. Tang, “How Much CPU Time?”, Draft NIST Technical Report, TR-ANTD-ANETS-
111999, November 1999.
<http://w3.antd.nist.gov/~mills/unpublished/NISTanetsTR.pdf>

Y. Carlinet, V. Galtier, K. Mills, S. Leigh, A. Rukhin, “Calibrating an Active Network
Node,” Proceedings of the 2nd Workshop on Active Middleware Services, ACM,
August 2000. <http://w3.antd.nist.gov/~mills/papers/Final-woasm.pdf>

V. Galtier, K. Mills, Y. Carlinet, S. Leigh, A. Rukhin, “Expressing Meaningful Processing
Requirements among Heterogeneous Nodes in an Active Network,” Proceedings of
the 2nd International Workshop on Software Performance, ACM, September 2000.
<http://w3.antd.nist.gov/~mills/papers/WSOPfu-04.pdf>

V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni, “Predicting Resource Demand
in Heterogeneous Active Networks”, submitted to MILCOM 2001.
<http://w3.antd.nist.gov/~mills/unpublished/ALTmilcom2001v4.pdf>

